Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Access restricted to UM
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Access restricted to UM
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Development of gene therapy for Duchenne muscular dystrophy heart disease in the MDX mouse model

    Bostick, Brian P., 1979-
    View/Open
    [PDF] public.pdf (2.157Kb)
    [PDF] short.pdf (9.449Kb)
    [PDF] research.pdf (10.18Mb)
    Date
    2010
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Duchenne muscular dystrophy (DMD) is a fatal genetic muscle disease with no cure. DMD results from mutations in a critical muscle protein called dystrophin. Children born with DMD suffer severe muscle wasting leading to progressive weakness and paralysis. Patients usually die of respiratory or heart failure before the age of thirty. Gene therapy raises the hope of a cure for DMD heart disease. While significant strides have been made towards therapy for skeletal muscle disease, development of heart gene therapy lags behind. The seminal questions for realization of heart gene therapy of DMD include; developing an animal model, determining dosage, finding the correct gene, developing the vehicle for gene therapy and optimizing gene delivery. This dissertation details critical advancements towards gene therapy for DMD heart disease. First, we developed an animal model of DMD heart disease in the mdx mouse. We then determined that 50% mosaic dystrophin expression was sufficient to prevent DMD heart disease in this model. Next, we established that the truncated mini-dystrophin gene was capable of ameliorating DMD heart disease in the mdx mouse through cardiac specific transgenic expression. Then, we established the adeno-associated virus (AAV) as a vehicle for DMD heart gene therapy regardless of mouse age or the route of administration. Finally, we discovered that AAV-mediated truncated dystrophin gene therapy prevented DMD heart disease in neonatal mdx mice and ameliorated heart disease in symptomatic mdx mice. This work represents significant progress towards realization of an effective therapy for DMD heart disease.
    URI
    https://hdl.handle.net/10355/10293
    https://doi.org/10.32469/10355/10293
    Degree
    Ph. D.
    Thesis Department
    Molecular microbiology and immunology (MU)
    Rights
    Access is limited to the campuses of the University of Missouri.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2010 MU dissertations - Access restricted to UM
    • Molecular Microbiology and Immunology electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems