## Standard Decision Theory Corrected: Assessing Options When Probability is Infinitely and Uniformly Spread

##### Abstract

Where there are infinitely many possible [equiprobable] basic states of the world, a standard probability function must assign zero probability to each state—since any finite probability would sum to over one. This generates problems for any decision theory that appeals to expected utility or related notions. For it leads to the view that a situation in which one wins a million dollars if any of a thousand of the equally probable states is realized has an expected value of zero (since each such state has probability zero). But such a situation dominates the situation in which one wins nothing no matter what (which also has an expected value of zero), and so surely is more desirable. I formulate and defend some principles for evaluating options where standard probability functions cannot strictly represent probability—and in particular for where there is an infinitely spread, uniform distribution of probability. The principles appeal to standard probability functions, but overcome at least some of their limitations in such cases.

##### Part of

##### Citation

Synthese 122 (2000): 261-290.