Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Mathematics (MU)
    • Mathematics publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Mathematics (MU)
    • Mathematics publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Short Kloosterman Sums for Polynomials over Finite Fields

    Banks, William David, 1964-
    Harcharras, Asma
    Shparlinski, Igor E.
    View/Open
    [PDF] ShortKloostermanSums.pdf (213.4Kb)
    Date
    2003
    Format
    Preprint
    Metadata
    [+] Show full item record
    Abstract
    We extend to the setting of polynomials over a finite field certain estimates for short Kloosterman sums originally due to Karatsuba. Our estimates are then used to establish some uniformity of distribution results in the ring Fq[x]/M(x) for collections of polynomials either of the form f−1g−1 or of the form f−1g−1 + afg, where f and g are polynomials coprime to M and of very small degree relative to M, and a is an arbitrary polynomial. We also give estimates for short Kloosterman sums where the summation runs over products of two irreducible polynomials of small degree. It is likely that this result can be used to give an improvement of the Brun-Titchmarsh theorem for polynomials over finite fields.
    URI
    http://hdl.handle.net/10355/10633
    Part of
    Mathematics publications (MU)
    Collections
    • Mathematics publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems