Prime divisors of palindromes
Abstract
In this paper, we study some divisibility properties of palindromic numbers in a fixed base g ≥ 2. In particular, if PL denotes the set of palindromes with precisely L digits, we show that for any sufficiently large value of L there exists a palindrome n ∈ PL with at least (log log n)1+o(1) distinct prime divisors, and there exists a palindrome n ∈ PL with a prime factor of size at least (log n)2+o(1).
Part of
Citation
Period. Math. Hungar. 51 (2005), 1-10.