Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthorAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthorAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Fundamental building blocks of nanoporous networks from ultra-small-angle x-ray scattering (USAXS) and small-angle x-ray scattering (SAXS) experiments

    Kraus, Michael A., 1978-
    View/Open
    [PDF] public.pdf (1.933Kb)
    [PDF] short.pdf (13.49Kb)
    [PDF] research.pdf (8.488Mb)
    Date
    2010
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    A new method of structural analysis that measures the nominal dimensions of pores using ultra-small-angle x-ray scattering (USAXS) and small-angle x-ray scattering (SAXS) data is presented. The characterization technique developed is applied to highly porous carbons that are used for reversible methane and hydrogen storage based on physisorption. Data is analyzed and fit under the primary working assumption that there is only one size and shape of pore and that the number of pores present in the sample is accounted for by the sample porosity, [phi]. The procedure presented in this study is not restricted to the analysis of carbonaceous materials. It is applicable to any porous material in which the nanopore is the fundamental building block. The advantage of our technique in comparison to methods currently used to measure the size and shape of nanopores, is that in addition to a width, at least one additional characteristic length is determined
    URI
    https://hdl.handle.net/10355/12009
    https://doi.org/10.32469/10355/12009
    Degree
    Ph. D.
    Thesis Department
    Physics (MU)
    Collections
    • 2010 MU dissertations - Freely available online
    • Physics and Astronomy electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems