Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri System
    • Missouri Summits
    • Missouri Energy Summit 2009
    • Posters (Missouri Energy Summit 2009)
    • View Item
    •   MOspace Home
    • University of Missouri System
    • Missouri Summits
    • Missouri Energy Summit 2009
    • Posters (Missouri Energy Summit 2009)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Advanced Biomimetic Materials for Reversible CO2 Capture from Air [abstract]

    Glaser, Rainer, 1957-
    Yin, Jian
    View/Open
    [PDF] AdvancedBiomimeticMaterials [abstract].pdf (64.13Kb)
    Date
    2009
    Contributor
    University of Missouri (System)
    Format
    Abstract
    Metadata
    [+] Show full item record
    Abstract
    The world is rightly focused on climate change. The U.N. Intergovernmental Panel on Climate Change(IPCC) identified carbon capture and storage (CSS) as a critical technology for reducing emissions, not only from power plants but also from industries that manufacture cement, chemicals and steel. The capture of CO2 from air and its long-term storage also presents the method of last resort to combat excessive atmospheric CO2 concentrations. IPPC concluded that the world has to reverse the increase of greenhouse gas emissions by 2020 to avert disastrous environment consequences. Modern societies largely rely on the fossil fuels to generate energy (electricity, heat, etc.) and as fuels for transportation, and the principle mode of fossil fuel use involves its direct combustion to water and carbon dioxide. Efforts to reduce CO2 emissions are directed at improving the combustion efficiency and/or at the development of technologies for carbon capture and storage (CCS). The fuel combustion efficiency depends on the type of fuel (coal, gaseous or liquid hydrocarbons, H2), the oxidizing agent (air, O2-enriched air, stream), and combustion conditions (pres., temp., cat.). It is the primary aim of CCS technologies to capture CO2 at the source and its long-term storage. The 2007 MIT study “The Future of Coal” concluded that “CCS is the critical enabling technology that would reduce CO2 emissions significantly while also allowing coal to meet the world's pressing energy needs.” The three major approaches to CCS involve post-combustion scrubbing, oxyfuel, and pre-combustion decarbonization technologies. It is the goal of our research to develop advanced materials for CO2 scrubbing. Nature has evolved five pathways for autotrophic CO2 fixation and our approach is inspired by the mechanism of the photosynthetic carbon assimilation via the Calvin-Bassham-Benson cycle. The mechanism of the Rubisco-catalysis involves the activation by way of carbamylation of active-site Lys by an activator CO2 (ACO2), and the carbamate thus formed is stabilized by complexation to Mg2+ and by NH...OC hydrogen-bonding. We present results of theoretical and mechanistic studies of organic materials that mimic Rubisco's capacity for reversible CO2 capture and discuss the fixation of these materials on porous, solid supports to achieve large-scale CO2 scrubbing from ambient air.
    URI
    http://hdl.handle.net/10355/1270
    Part of
    Posters (Missouri Energy Summit 2009)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Chemistry Department publications, presentations, and datasets (MU)
    • Posters (Missouri Energy Summit 2009)
    • Abstracts (Missouri Energy Summit 2009)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems