Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Test of the half-center model for locomotor activity in adult lamprey spinal cord [abstract]

    St. Paul, Alison
    Hargis, Sarah
    McClellan, Andrew
    View/Open
    [PDF] TestHalf-centerModel.pdf (18.13Kb)
    Date
    2007
    Contributor
    University of Missouri-Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Rhythmic motor behaviors, such as locomotion, chewing, scratching, copulation, and communication, are critical for survival. In all animals, rhythmic motor activity is produced by central patterns generators (CPGs) which consist of neuronal modules that are coupled by a coordinating system. For example, in a cat separate spinal modules control the movements of each limb, and the coordinating system can couple the modules in different ways to produce different gaits (walk, trot, gallop). Each module can be divided into oscillators that usually are connected by reciprocal inhibition (i.e. "half-center" model) to produce alternating motor patterns (e.g. flexion « extension). These oscillators generally are assumed to be autonomous and able to function without the reciprocal connections. In the lamprey, locomotion (swimming) is produced by pairs of oscillators that are distributed along the spinal cord and connected by left-right reciprocal inhibition (Hagevik and McClellan, 1994). In adult lamprey, we tested the half-center model by investigating whether the phasing of left-right burst activity could be correctly maintained in the absence of left-right reciprocal coupling. Adult lamprey received a longitudinal midline lesion in the rostral spinal cord (10% à 35% body length). After the midline lesion, the animals were able to swim, and the appropriate phasing of left and right muscle burst activity was present in both caudal and rostral parts of the body. After a spinal transection was made at 35% body length to isolated the rostral left and right halves of the spinal cord from intact cord, locomotor-like burst activity was no longer present in the rostral spinal cord. We obtained similar results in larval lamprey (Jackson et al., 2005). Thus, in lamprey, the data do not support the "half-center" model because left and right spinal cord oscillators are not autonomous but appear to require left-right reciprocal coupling to function properly.
    URI
    http://hdl.handle.net/10355/1283
    Collections
    • 2007 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems