Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2011 Dissertations (MU)
    • 2011 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2011 Dissertations (MU)
    • 2011 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Chemical sensor using single crystal diamond plates interrogated with charge-based deep-level transient spectroscopy based on the Quantum Fingerprint[TM] model : instrumentation and methodology

    Montenegro, Daniel Enrique
    View/Open
    [PDF] public.pdf (2.291Kb)
    [PDF] research.pdf (4.215Mb)
    [PDF] short.pdf (49.03Kb)
    Date
    2011
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    In recent years, diamond has received a great deal of interest as a potential chemical sensor material due to its mechanical robustness, and its capacity to modify its electrical characteristics according to surface termination and adsorbed chemical agents. Previous studies have suggested that an adsorbed molecule can localize a carrier in the same way a surface trap can. The present work focuses on molecules chemisorbed to the oxygen-terminated surfaces of high-purity CVD single crystal (100) diamond plates. Potentially, a given adsorbed molecule can be uniquely related to a new surface energy state, thus producing a characteristic spectral signature. This technology is named Quantum Fingerprinting[trademark]. To investigate the adsorbate-induced surface energy states, an ultra-sensitive, non-steady state interrogation device called Charge-based Deep-Level Transient Spectrometer (Q-DLTS) was built and tested. This system was used to investigate the effects of various basic alcohols and benzene derivatives on the surface states of the sensor. It was found that both types of molecules produce a large primary spectral peak and a smaller, transient one. For alcohol, both peaks display a consistent increase in amplitude as the molecule's carbon content becomes larger. The secondary peak shows a faster emission rate with heavier alcohol molecules. This was attributed to the appearance of new surface states. The secondary peak of the benzene derivative disappears a few minutes after the initial introduction. This is believed to be the result of physisorption.
    URI
    https://hdl.handle.net/10355/14292
    https://doi.org/10.32469/10355/14292
    Degree
    Ph. D.
    Thesis Department
    Nuclear engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2011 MU dissertations - Freely available online
    • Nuclear Science and Engineering Institute electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems