Finite element analysis and experimental comparison of doubly reinforced concrete slabs subjected to blast loads

MOspace/Manakin Repository

Breadcrumbs Navigation

Finite element analysis and experimental comparison of doubly reinforced concrete slabs subjected to blast loads

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/14606

[+] show full item record


Title: Finite element analysis and experimental comparison of doubly reinforced concrete slabs subjected to blast loads
Author: Vasudevan, Anirudha Kadambi
Date: 2012-06-11
Publisher: University of Missouri--Kansas City
Abstract: In the design of concrete structures, it has become important to understand the response of concrete as a structural material when subjected to large stresses and strain rates through explosive loadings. In order to do that, any researcher has to study the dynamic nonlinear responses of individual structural components like beams, slabs, and columns of an entire building system. Also, advances in finite element modeling and analysis have further enhanced interest in studying the behavior and response of these individual components towards dynamic loadings and arrive at certain answers that can make them stronger and consequently serve the primary purpose of saving lives of people. The primary objective of this research is to study numerically, the response of both high strength concrete and normal strength concrete panels reinforced with double mat high strength low alloy vanadium (HSLA-V) reinforcement. A numerical validation by comparing with experimental data , using two pre-defined concrete material models namely, Winfrith Concrete Model and Concrete Damage Model Release 3 in LSDYNA is performed in order to study the model capabilities and limitations of the models so that these material models may be used as an alternative to expensive field testing for blast protection in structures. From the study it was concluded that, both the models gave deflection values that compared well with the experimental results in the normal strength (4 ksi) concrete category. However, the Winfrith Concrete Model provided a better response in terms of deflection and crack propagation than the Concrete Damage Model Release 3 in the high strength concrete (15.5 ksi) category.
URI: http://hdl.handle.net/10355/14606

This item appears in the following Collection(s)

[+] show full item record