Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Purification and analysis of human muc reporter proteins

    Chilcutt, Sara
    Waters, James
    Mossine, Valeri
    Mawhinney, Thomas
    View/Open
    [PDF] PurificationAnalysisHumanMuc.pdf (13.21Kb)
    Date
    2004
    Contributor
    University of Missouri--Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Exocrine mucous glycoproteins are a family of multifunctional heavily glycosylated, anionic macromolecules that typically possess a high serine/threonine content. The size and complexity of these glycoprotein molecules, while physiologically beneficial, prohibits direct analysis of small-to-moderate changes within the side-chain oligosaccharides. These polydispersed molecules have a protein core encoded by muc-genes, which possess multiple repeats within their sequences. To assist in developing a method to study these complex molecules, a reporter-DNA construct, for eventual eukaryotic expression, consisting of an IgK secretory leader sequence, two polyHis regions, two HSV and one myc antigenic sites was synthesized. This construct was then utilized by incorporating two separate muc repeat-sequence units; one consisting of muc-2/muc-2 and one possessing muc-2/muc-4 (i.e., amuc2c and amuc24c, respectively). DNA plasmids pET28-amuc2c and pET28-amuc24c were transformed into the bacterial strain Ecoli BL21DE3. Expressed proteins from transformants were isolated and purified, and then analyzed by MALDI-TOF MS. Mass+H+ (avg) of 16306.2 Da and 17062.8 Da for amuc2c and amuc24c, respectively, were observed. MS and MS/MS analysis of the tryptic digests of these expressed proteins also confirmed their respective sequences. To test the efficacy of possible coexpression of fluorescent protein transfection markers with the muc-constructs in eukaryotic cells, preliminary transfections of fluorescent DNA plasmids pEGFPc1 (green, cytoplasmic), pDSRed2-N1 (red, secretory-IgK), pEYFP-Golgi (yellow) and pECFP-Golgi (cyan) into MATLyLu cells (rat prostate cancer) are being performed. The successful conclusion of these ongoing studies will result in the expression of a small, glycated, and secreted muc-protein from transfected human intestional and respiratory cells in vitro that also are producing muc-related macromolecules. These posttranslationally modified amuc2c and amuc24c reporter proteins can then be analyzed, in detail, by contemporary methods. They will be employed as tools to help provide an insight into the changes that occur in the posttranslational modifications of macromolecular glycoproteins in human disease, such as cystic fibrosis.
    URI
    http://hdl.handle.net/10355/1474
    Part of
    2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems