[-] Show simple item record

dc.contributor.authorPfautsch, Emilyeng
dc.contributor.corporatenameUniversity of Missouri-Columbia. Office of Undergraduate Researcheng
dc.contributor.meetingnameUndergraduate Research and Creative Achievements Forum (2006 : University of Missouri--Columbia)eng
dc.date2006eng
dc.date.issued2006eng
dc.descriptionAbstract only availableeng
dc.description.abstractUltra-fast, ultra-intense lasers (UUL) produce laser pulse durations that last only a femtosecond (10-15 s). Because the laser pulse is so short, the heat-affected area is greatly reduced, and less tissue is damaged when it is used on biological material. As a result, the laser has many applications for surgery because it would insure more successful surgeries and quicker recovery time for the patient. The UUL laser was invented in 1996, and is still rather new, so in order to better understand how the laser interacts with biological material, laser simulations needed to be developed. Previous research has examined the effects of one laser pulse on biological tissues. The goal of my research is to understand how an additional pulse will affect biological material. To simulate the lasers, numerical methods were developed to analyze the response of biological tissue to UUL pulses, which were then used to develop a computer program. The results from the simulation predict that the first laser pulse forms plasma, which is like an electron gas. The newly-formed plasma absorbs a great deal of the second laser pulse's intensity and reduces its duration. Therefore, I have determined that it would be more efficient to use single pulses for drilling or cutting through biological tissue than two pulses, since the intensity and duration of the second pulse is hindered by the plasma. My research has helped us learn more about how the UUL laser works, and has produced some key information that will be required to implement the UUL laser into surgical procedures.eng
dc.description.sponsorshipCollege of Engineering Honors Undergraduate Research Optioneng
dc.identifier.urihttp://hdl.handle.net/10355/1494eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri - Columbia Office of Undergraduate Researcheng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Office of Undergraduate Research. Undergraduate Research and Creative Achievements Forumeng
dc.source.urihttp://undergradresearch.missouri.edu/forums-conferences/abstracts/abstract-detail.php?abstractid=eng
dc.subjectpulse durationeng
dc.subjecttissue damageeng
dc.subjectpatient recovery timeeng
dc.titleUltra-fast, ultra-intense lasers for use in surgery [abstract]eng
dc.typePresentationeng


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record