TILLING to detect induced mutations in soybean

MOspace/Manakin Repository

Breadcrumbs Navigation

TILLING to detect induced mutations in soybean

Please use this identifier to cite or link to this item: http://dx.doi.org/10.1186/1471-2229-8-9

[+] show full item record


Title: TILLING to detect induced mutations in soybean
Author: Cooper, Jennifer L; Till, Bradley J; Laport, Robert G; Darlow, Margaret C; Kleffner, Justin M; Jamai, Aziz; El-Mellouki, Tarik; Liu, Shiming; Ritchie, Rae; Nielsen, Niels; Bilyeu, Kristin D; Meksem, Khalid; Comai, Luca; Henikoff, Steven
Date: 2008-01-24
Citation: BMC Plant Biology. 2008 Jan 24;8(1):9
Abstract: Abstract Background Soybean (Glycine max L. Merr.) is an important nitrogen-fixing crop that provides much of the world's protein and oil. However, the available tools for investigation of soybean gene function are limited. Nevertheless, chemical mutagenesis can be applied to soybean followed by screening for mutations in a target of interest using a strategy known as Targeting Induced Local Lesions IN Genomes (TILLING). We have applied TILLING to four mutagenized soybean populations, three of which were treated with ethyl methanesulfonate (EMS) and one with N-nitroso-N-methylurea (NMU). Results We screened seven targets in each population and discovered a total of 116 induced mutations. The NMU-treated population and one EMS mutagenized population had similar mutation density (~1/140 kb), while another EMS population had a mutation density of ~1/250 kb. The remaining population had a mutation density of ~1/550 kb. Because of soybean's polyploid history, PCR amplification of multiple targets could impede mutation discovery. Indeed, one set of primers tested in this study amplified more than a single target and produced low quality data. To address this problem, we removed an extraneous target by pretreating genomic DNA with a restriction enzyme. Digestion of the template eliminated amplification of the extraneous target and allowed the identification of four additional mutant alleles compared to untreated template. Conclusion The development of four independent populations with considerable mutation density, together with an additional method for screening closely related targets, indicates that soybean is a suitable organism for high-throughput mutation discovery even with its extensively duplicated genome.
URI: http://dx.doi.org/10.1186/1471-2229-8-9
http://hdl.handle.net/10355/15138

This item appears in the following Collection(s)

[+] show full item record