[-] Show simple item record

dc.contributor.authorAlsharif, Sareneeng
dc.contributor.authorRogers, Elizabeth E.eng
dc.contributor.corporatenameUniversity of Missouri-Columbia. Office of Undergraduate Researcheng
dc.contributor.meetingnameUndergraduate Research and Creative Achievements Forum (2007 : University of Missouri--Columbia)eng
dc.date2007eng
dc.date.issued2007eng
dc.descriptionAbstract only availableeng
dc.description.abstractIron is an essential element present in many common proteins, and is crucial in many metabolic pathways. This role is evident in the disorders due to iron deficiency. Anemia, caused by iron deficiency, is the most common nutritional disorder affecting the world's population. As most people depend primarily on plants for their nutritional needs, one way of reducing this problem will be to enhance the bioavailable iron content of plants. A better understanding of how plants acquire, transport and store iron is needed before this goal can be achieved. The Arabidopsis frd3 mutant constitutively activates its iron uptake mechanisms, resulting in an over accumulation of iron and other metals. However iron is mislocalized and never enters leaf cells where it is ultimately required. Recent work has suggested that the FRD3 protein transports citrate into the root vasculature which is necessary for the correct localization of iron throughout the plant. One way to learn more about the FRD3 protein, and about iron homeostasis in plants, is through an activation tagging screen looking for suppressors of the frd3 phenotype. Briefly, the activation tagging construct has been transformed into frd3 plants using the established agrobacterium floral dip method. Suppressor mutants have been selected using ferric chelate reductase assay. Putative mutants have been transferred to soil, and three generations have been screened. After confirmation, TAIL-PCR will be used to identify activated genes. Additional mutant characterization will be carried out at this stage. At least three classes of genes could be identified through this screen: (1) other citrate effluxers that will perform the same function as FRD3, (2) repressors of FRO2, the root ferric chelate reductase or (3) transporters that would facilitate movement of iron into leaf cells. Discovery and further characterization of these genes would greatly facilitate our understanding of iron nutrition in plants.eng
dc.description.sponsorshipMU Monsanto Undergraduate Research Fellowshipeng
dc.identifier.urihttp://hdl.handle.net/10355/1550eng
dc.publisherUniversity of Missouri--Columbia. Office of Undergraduate Researcheng
dc.relation.ispartof2007 Undergraduate Research and Creative Achievements Forum (MU)eng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Office of Undergraduate Research. Undergraduate Research and Creative Achievements Forumeng
dc.source.urihttp://undergradresearch.missouri.edu/forums-conferences/abstracts/abstract-detail.php?abstractid=eng
dc.subjectiron deficiencyeng
dc.subjectbioavailable ironeng
dc.subjectanemiaeng
dc.titleCharacterizing the Arabidopsis frd3 mutant through an activation tagging screen [abstract]eng
dc.typePresentationeng


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record