Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2012 Dissertations (MU)
    • 2012 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2012 Dissertations (MU)
    • 2012 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Bayesian methods on selected topics

    Liang, Ye
    View/Open
    [PDF] public.pdf (1.835Kb)
    [PDF] research.pdf (787.3Kb)
    [PDF] short.pdf (3.878Kb)
    Date
    2012
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Bayesian methods are widely adopted nowadays in statistical analysis. It is especially useful for the statistical inference of complex models or hierarchical models, for which the frequentist methods are usually difficult to be applied. Though as a decision-making theory, often there are debates on the prior choices, the Bayesian methods benefits from its computational feasibility, with a variety of Markov chain Monte Carlo algorithms available. Three topics are studied using Bayesian methods. First, the competing risks model for masked failure data is investigated, which suffers from an identification problem. The identification problem and possible solutions are discussed and a Bayesian framework is used for the complex model. The other two topics are relevant, focusing on the lattice system and areal data. For a specific lattice system called generative star-shape model, objective priors are developed in order to achieve better estimations. The last topic is modeling areal data from a special project. A hierarchical model is developed for modeling the bounded outcomes with spatial variation and a Bayesian analysis is performed.
    URI
    https://doi.org/10.32469/10355/15884
    https://hdl.handle.net/10355/15884
    Degree
    Ph. D.
    Thesis Department
    Statistics (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2012 MU dissertations - Freely available online
    • Statistics electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems