Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2012 Dissertations (MU)
    • 2012 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2012 Dissertations (MU)
    • 2012 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Bayesian analysis of spatial and survival models with applications of computation techniques

    Liu, Yajun
    View/Open
    [PDF] public.pdf (1.941Kb)
    [PDF] research.pdf (2.475Mb)
    [PDF] short.pdf (27.80Kb)
    Date
    2012
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    This dissertation discusses the methodologies of applying Bayesian hierarchical models to different data with geographical characteristics or with right-censored failure time. A conditional autoregressive (CAR) prior is used for the model to capture spatial effects. Markov chain Monte Carlo (MCMC) methods are used in the sampling. The Ancillary-Sufficient Interweaving Strategy (ASIS) is applied to improve the performance for some parameters. The convergence of some of the parameters improved greatly, but the others do not have very significant improvement. However, the overall performance has improved greatly since it needs much fewer iterations than using regular Gibbs sampling to achieve convergence. For the survival analysis, we propose a generalized linear mixed model with different effects for the hazard rates, and adopte a cure rate model in Chen et al. (1999) for the hazards. A ratio-of-uniforms method is used to get the posterior density of some parameters that can not be simply sampled by common methods. Both the Weibull model and cure rate models are compared. Moreover, for the same data set, competing risks model is considered by incorporating spatial effect to a latent competing risk model from Gelfand et al. (2000). The sampling method mentioned in Berger & Sun (1993) is adapted for efficiency. Finally, spatial confounding occurs when incorporating spatial effects in a regression model. Several estimators of the coefficients are compared for their Mean Squared Errors. The corresponding prediction errors are also discussed.
    URI
    https://doi.org/10.32469/10355/15886
    https://hdl.handle.net/10355/15886
    Degree
    Ph. D.
    Thesis Department
    Statistics (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2012 MU dissertations - Freely available online
    • Statistics electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems