Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    The role of the cytoskeleton in the formation and properties of membrane tethers

    Critser, Paul
    Sun, Mingzhai, 1979-
    Forgács, Gabor, 1949-
    View/Open
    [PDF] RoleOfCytoskeleton.pdf (10.61Kb)
    Date
    2004
    Contributor
    University of Missouri--Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Membrane tethers play a critical role in cell adhesion and cell motility. This can be observed in the arrest of neutrophils on the endothelial wall of blood vessels during inflammatory response. Tethers are employed to slow down neutrophils when they are attracted to the periphery of the vessels due to chemotactic gradients set up by cytokines. As a result of slowing down, the neutrophil has time to form specific bonds with endothelial cells and start extravasating from the circulatory system into the surrounding tissue. Metastasizing cancer cells use a similar mechanism. A wide array of factors affects the mechanical characteristics of tethers. A major contribution is provided by the interaction between the cytoskeleton and the membrane. Interbilayer slip and the interaction between the membrane and the glycocalix are additional determinants of tether properties. Previous studies have shown a strong dependence of force needed to extract and pull a tether on the interaction between the membrane and the cytoskeleton. It has also been shown that disrupting the integrity of the cytoskeleton significantly reduces the tether force. The focus of this study was to further elucidate the contribution of the cytoskeleton-lipid bilayer interaction to the tether force, in particular how it affects cell membrane surface viscosity. Atomic Force Microscopy based force spectroscopy was used to determine the tether force and surface viscosity of the membrane prior and after the actin microfilament system had been depolyermerized by latrunculin-A. Two cells lines, Chinese Hamster Ovary (CHO) and Human Brain tumor (HB) cells were investigated. The tether force was determined when the membrane was stretched by a cantilever moving at a constant velocity over a range 3 to 21 micron/s. Surface viscosity was obtained from the slope of the linear force-speed curve. Quantitative information on tether forces and membrane surface viscosities allow for a better understanding of the mechanism responsible for the arrest of neutrophils during their attachment to the endothelial wall.
    URI
    http://hdl.handle.net/10355/1589
    Part of
    2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems