Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    The effect of steroids on GPR54 and GnRH neurons in the postpubertal male mouse [abstract]

    Hackman, Sarah
    Garro, Mona
    Kovarik, M. Cathleen
    View/Open
    [PDF] EffectSteroidsGPR54.pdf (28.85Kb)
    Date
    2007
    Contributor
    University of Missouri-Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    A novel neuropeptide, kisspeptin, binds to the receptor GPR54, to influence the initiation and regulation of puberty in mammals. It appears that the activation of GPR54 stimulates the release of gonadotropin releasing hormone (GnRH) from specialized neurons, resulting in the activation of the reproductive system. To further understand the role of the kisspeptin system in GnRH secretion, levels of GPR54 and GnRH mRNA were compared in hypothalamic tissue before, during, and after puberty in male mice. In addition, the expression of GPR54 and GnRH mRNA was examined after castration with or without steroid replacement in postpubertal males. Transgenic male mice that express green fluorescent protein (GFP) were used at 20, 30, and 60 days postnatal (PND). Some postnatal mice were gonadectomized (GDX), and half received testosterone (T) replacement. RNA was isolated from the septum and the basal hypothalamus (areas known to contain GnRH neurons), reverse transcribed, and subjected to real-time, quantitative PCR. Levels of mRNA were compared between GDX and GDX+T, as well as at each of the three ages. Relative amounts of mRNA from GPR54 and GnRH were compared with a housekeeping gene, RPII, using standard curves. Preliminary data suggests that the amount of GPR54 mRNA in hypothalamic tissue is unchanged at the ages studied (p<0.892), although we need to increase the number of mice studied at each age. However, the levels of GnRH mRNA in hypothalamic tissue do increase, although not significantly, with age and the pubertal transition (p<0.112). In postpubertal mice, the relative amount of GnRH mRNA is greater than GPR54 mRNA. Thus, data indicate that there is a decrease in GPR54 mRNA when compared to GnRH mRNA (p<0.05) during the pubertal transition. Studies that examine the effect of steroids on GPR54 and GnRH mRNA expression are currently in progress.
    URI
    http://hdl.handle.net/10355/1605
    Collections
    • 2007 Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems