[-] Show simple item record

dc.contributor.authorHunter, Jasoneng
dc.contributor.authorFurrer, Jason L., 1976-eng
dc.contributor.authorMcIntosh, Mark A.eng
dc.contributor.corporatenameUniversity of Missouri-Columbia. Office of Undergraduate Researcheng
dc.contributor.meetingnameSummer Undergraduate Research and Creative Achievements Forum (2004 : University of Missouri--Columbia)eng
dc.date2004eng
dc.date.issued2004eng
dc.descriptionAbstract only availableeng
dc.description.abstractTo acquire the necessary iron against harsh competition in the environment, iron starved bacteria synthesize, excrete and retrieve iron scavenging molecules termed siderophores, one of which is enterobactin. TolC protein may play a vital role in the secretion of enterobactin. Enterobactin molecules destined for secretion must cross both the inner (cytoplasmic) and outer membranes and the intervening periplasmic space, believed to be a distance of at least 130Å across. TolC resembles a trans-periplasmic tunnel embedded in the outer membrane of the cell. It is open to the external environment but is closed at its periplasmic entrance. In order for the cell to export enterobactin, TolC is recruited by substrate specific membrane complexes (translocases) in the periplasmic space and inner membrane. When TolC is recruited, the entrance is opened to allow substrate passage through a continuous machinery spanning the entire cell envelope, from the cytosol to the external environment. PCR primers specific for TolC were designed to amplify the TolC gene. The quality of the PCR product was confirmed using agarose gel electrophoresis. The TolC gene was cloned into a pBAD directional TOPO vector containing an N-terminal His-tag and a gene for kanamycin resistance. The recombinant vector was then transformed into One Shot TOP10 competent Escherichia coli cells. Transformants were selected for by plating on LB medium supplemented with kanamycin. Transformed colonies were analyzed using PCR and restriction digestion. Positive transformants were selected and expression was induced with arabinose. SDS-PAGE assay with His-tag In-gel stain revealed TolC expression. Furthermore, analysis of TolC-null mutations using high performance liquid chromatography (HPLC) reveals that the TolC mutant secretes little, if any, enterobactin. However, some levels of breakdown products 2,3-dihydroxybenzoylserine (DHBS) monomer, dimer, and trimer are observed. These data establish that TolC may be a critical component of the E. coli enterobactin secretion machinery and may represent a type of siderophore export mechanism previously undescribed. TolC family proteins are ubiquitous among gram-negative bacteria, and the conserved apertures present a possible chemotherapeutic target in multidrug-resistant pathogens.eng
dc.description.sponsorshipMolecular Biology Programeng
dc.identifier.urihttp://hdl.handle.net/10355/1708eng
dc.languageen_USeng
dc.publisherUniversity of Missouri--Columbia. Office of Undergraduate Researcheng
dc.relation.ispartof2004 Summer Undergraduate Research and Creative Achievements Forum (MU)eng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Office of Undergraduate Research. Undergraduate Research and Creative Achievements Forumeng
dc.source.urihttp://undergradresearch.missouri.edu/forums-conferences/abstracts/abstract-detail.php?abstractid=eng
dc.subjectTolC proteineng
dc.subjectsiderophore enterobactineng
dc.subjectEscherichia colieng
dc.titleInvolvement of TolC protein in the export of siderophore enterobactin in Escherichia colieng
dc.typePresentationeng


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record