Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2008 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2008 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Peptide profiling: Correlating estrogen receptor conformation with biological response

    Beeman, Joseph
    Niebruegge, Bridget A.
    Ghormley, Alison L.
    Myears, Hillary E.
    Nagel, Susan C.
    View/Open
    [PDF] PeptideProfilingCorrelatingEstrogen.pdf (24.83Kb)
    Date
    2008
    Contributor
    University of Missouri-Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Chemicals found in the environment have been found to behave like the body's natural estrogen, estradiol. These exogenous estrogen-mimicking compounds have been termed xenoestrogens. Both estradiol and xenoestrogens can bind two estrogen receptors (ERs), ER alpha and ER beta, to elicit biological responses. The receptors are ligand inducible transcription factors that exhibit unique biological actions. While estradiol binds both receptors equally, some xenoestrogens have been shown to bind ER beta preferentially. When the ER is bound, the ligand induces a unique ER shape and in turn causes an array of tissue-specific biological responses. For example, the ligand tamoxifen, a commonly used breast cancer pharmaceutical, exhibits an ER antagonist response in the breast and an ER agonist response in the bone. This dual ligand quality characterizes what is now known as a selective estrogen receptor modulator (SERM). Peptide profiling, a novel ER ligand screening assay, is a method that can potentially identify SERMS by correlating in vitro ER conformation with in vivo biological response. Each ligand is screened using a two-hybrid fusion protein reporter gene assay. Upon ligand binding, the ER assumes a conformation; with this induced shape, some ER-interacting peptides will be able to bind while others will not. After screening a ligand against a library of fifteen different peptides, a unique peptide profile will figuratively illustrate the induced ER conformation. Eight xenoestrogens were screened in this experiment: estradiol, a natural physiological estrogen; resveratrol and genistein, two phytoestrogens; MPP, bisphenol A, and 4-hydroxytamoxifen, all synthetic estrogens; α-endosulfan and methoxychlor, both insecticides used on crops. Each ligand was found to have a unique peptide profile and, implicitly, a distinct ER conformation. The next step will be to determine each ligand's tissue specific activity and identify the unique peptide fingerprint that predicts its in vivo biological response. By correlating a ligand's tissue specific estrogenic activity with its unique ER conformation, peptide profiling will not only further elucidate tissue-specific ER activity differences but could also be used as a high-throughput screening tool for other potential environmental xenoestrogens and identify novel therapeutic SERMs.
    URI
    http://hdl.handle.net/10355/1719
    Part of
    2008 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2008 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems