Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2007 Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Characterization of soybean genes involved in soybean cyst nematode (SCN) resistance [abstract]

    Yeckel, Gregory
    Ithal, Nagabhushana
    Nettleton, Dan
    Recknor, Justin
    Wu, Xiaolei R.
    Nguyen, Henry T.
    Mitchum, Melissa G.
    View/Open
    [PDF] CharacterizationSoybeanGenesInvolved.pdf (26.58Kb)
    Date
    2007
    Contributor
    University of Missouri-Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    The expansion of the soybean cyst nematode (SCN; Heterodera glycines) across soybean producing regions of the United States shows no signs of slowing. Resistant soybean germplasm has been used as the primary strategy to manage this pest. However, soybean resistance against SCN is derived from a narrow genetic base and repeated plantings have selected for populations of SCN that can break the resistance. Therefore, understanding the molecular mechanisms of soybean resistance is critical for designing novel strategies to improve crop plant resistance to SCN. To identify genes potentially involved in SCN resistance, we previously coupled laser capture microdissection with microarray profiling to compare gene expression profiles of nematode feeding cells induced in resistant and susceptible near-isogenic lines (NILs) of soybean. We identified 390 soybean genes that were differentially expressed between the resistant and susceptible NILs. Bacterial artificial chromosome (BAC) pools of soybean DNA were then screened for the presence of a subset of these genes. Three genes, believed to be involved in soybean stress and defense responses, were selected for further functional studies. Full length gene and cDNA sequences are being isolated using genome walking and RACE PCR approaches. RNAi and overexpression studies will be used to test the function of these genes in resistance to SCN.
    URI
    http://hdl.handle.net/10355/1844
    Part of
    2007 Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2007 Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems