[-] Show simple item record

dc.contributor.authorRaikar, Leenaeng
dc.contributor.authorVallejo, Johanaeng
dc.contributor.authorHardin, Christopher D.eng
dc.contributor.corporatenameUniversity of Missouri-Columbia. Office of Undergraduate Researcheng
dc.contributor.meetingnameSummer Undergraduate Research and Creative Achievements Forum (2004 : University of Missouri--Columbia)eng
dc.date2004eng
dc.date.issued2004eng
dc.descriptionAbstract only availableeng
dc.description.abstractPrevious work from our laboratory has shown that glycolysis and gluconeogenesis occur in separate compartments within the vascular smooth muscle cell ( VSM ) and that their intermediates do not mix freely in the cytoplasm. We have previously found that the glycolytic -specific enzyme phosphofructokinase ( PFK ) appeared to colocalize with the fairly ubiquitous plasma membrane protein caveolin -1 ( CAV - 1 ), consistent with a role for CAV - 1 as an anchor for glycolysis to the plasma membrane. We hypothesized that CAV - 1 serves as a scaffolding protein for PFK and may play a role for the organization of cell metabolism. To test this hypothesis , we over -expressed the CAV - 1 gene in cultured A7r5 ( rat aorta VSM ) cells by transfection with a CAV - 1 coding plasmid. Immunoflorescence and confocal microscopy were used to study the distribution of PFK and CAV - 1 in the transfected cells. Areas of Interest ( AOI ) were analyzed in a central z -plane across the cell transvesing the perinuclear region. To quantify any shift in PFK localization resulting from CAV - 1 over -expression , we calculated a periphery to center ( PC ) index by taking the average of the two outer AOIs from each membrane region and dividing by the central one or two AOIs. We found that the PC was 2. 2 5 + / - 0. 8 5 ( mean + / - SEM, N = 5 ) for transfected cells and was 0. 4 7 + / - 0. 1 6 for control cells. These results demonstrate that CAV - 1 creates binding sites for PFK that may be of higher affinity than those localized in the cytoplasm ( such as microtubules and the actin cytoskeleton ). We therefore conclude that CAV - 1 functions as a scaffolding protein for PFK and that this may contribute to the elucidation of the basis for carbohydrate compartmentation to the plasma membrane in VSM. Support provided by NIH 60668 (to Christopher D. Hardin) and Life Sciences Undergraduate Research Opportunity Program (LS UROP).eng
dc.description.sponsorshipLife Sciences Undergraduate Research Opportunity Programeng
dc.identifier.urihttp://hdl.handle.net/10355/1876eng
dc.languageen_USeng
dc.publisherUniversity of Missouri--Columbia. Office of Undergraduate Researcheng
dc.relation.ispartof2004 Summer Undergraduate Research and Creative Achievements Forum (MU)eng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Office of Undergraduate Research. Undergraduate Research and Creative Achievements Forumeng
dc.source.urihttp://undergradresearch.missouri.edu/forums-conferences/abstracts/abstract-detail.php?abstractid=eng
dc.subjectcaveolin-1eng
dc.subjectphosphofructokinaseeng
dc.subjectmembrane associated metabolic compartmenteng
dc.titleOverexpression of caveolin-1 results in increased plasma membrane trageting of phosphofructokinase: The structural basis for a membrane associated metabolic compartmenteng
dc.typePresentationeng


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record