Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    From pyruvate to PEP...the unknown pathway

    Wigfall, Darian
    Oehrle, Nathan Wayne, 1972-
    View/Open
    [PDF] FromPyruvateToPEP.pdf (9.980Kb)
    Date
    2004
    Contributor
    University of Missouri-Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Soybean is a major crop in the United States. Its survival and relationship with its environment are closely monitored. For example, we are looking at the symbiotic relationship between soybean and the soil bacteria. These bacteria can convert nitrogen in the air into usable nitrogen for the soybean plant. This process occurs when the rhizobium forms a nodule on the soybean root. These nodules are complex, hyperplastic tissue masses derived from cortical cells that transport nitrogen as uerides. The soybean plant then in turn acts as a carbon and energy source for the bacteria. The metabolic pathway for the bacteria's reception and consumption of this carbon is unknown. Our specific focus is to use in gel assays to identify the presence of glyceraldehydes-3-P-dehydrogenase, phosphoglycerate kinase, phosohpoglycerate mutase and enolase, used by the plant to synthesize a reaction to convert glyceraldehydes-3-phosphate into PEP (phosphoenolpyruvate) which will be conducted after my departure from the lab. We first conduct a protein extraction to isolate only the desired material from the soybean plant. We then use a one-dimensional gel enzyme assay to determine whether our four main enzymes are active (we received positive results for all four). Also, a two-dimensional gel enzyme assay to determine whether the enzyme we have found is indeed the one we think we have identified in one dimension (we have found positive results for all except phosphoglycerate mutase). Finally, we use an enzyme assay to determine if there is enzyme activity by measuring the absorbance of a solution containing substrate and introducing the enzyme. We found the presence and activity of all of the crucial enzymes involved in the pathway. We have pretty much concluded that this pathway, formerly thought to be a part of the Alanine Transport model, is more likely to be a part of the plant's metabolism.
    URI
    http://hdl.handle.net/10355/2048
    Part of
    2004 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2004 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems