Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Camgaroo-2 as an indicator of function in embryonic and neuralized stem cells

    Beatty, Robyn
    Pierret, Chris, 1972-
    Spears, Kathleen
    Kirk, Mark D.
    View/Open
    [PDF] Camgaroo-2AsIndicatorFunction.pdf (14.30Kb)
    Date
    2005
    Contributor
    University of Missouri-Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    The transplantation of stem cells to replace cells that have been lost or damaged due to disease or injury is quickly becoming a conceivable treatment method. Embryonic stem (ES) cells have the capacity to become any cell in the body, so the therapeutic possibilities are vast. The ultimate goal of our research on ES cells is to induce them to differentiate into functioning neurons to replace those that are lost in patients suffering from neurodegenerative disorders. However, it is important that the differentiated cells possess the appropriate phenotype and are able to perform the correct function after transplantation. In the past, it was common to accept a differentiated cell's fate based solely on its morphology and the presence of specific membrane markers. Now, it is becoming increasingly important to determine a donor stem cell's fate based on its function, especially if the cell is to be transplanted into a subject as a means of therapy. This study used the calcium-sensitive protein Camgaroo-2 to test the function of embryonic stem cells and cells directed toward a neural lineage. Camgaroo-2 is a fusion protein that consists of calmodulin in between two halves of yellow fluorescent protein. When calcium is present, it binds to the calmodulin portion of the Camgaroo-2, inducing a conformational change that results in increased fluorescence. After mouse embryonic stem cells were transfected with Camgaroo-2, we used reagents such as potassium chloride and ionomycin, known to elevate intracellular calcium, to confirm that the ES cells were stably transfected with the plasmid, and that Camgaroo-2 was functioning correctly. Potassium chloride causes the cell to depolarize while ionomycin (a calcium ionophore) creates large pores in the cell membrane. Both reagents allow for an influx of calcium into the cell, leading to increased fluorescence. The Camgaroo-2 transfected ES cells showed the appropriate responses to KCl and ionomycin by depolarizing and showing visible increases in fluorescence. This confirms that our Camgaroo-2 construct is functioning in the ES cells. We are in the process of testing the responses of neuralized ES cells using appropriate neurotransmitters, the presence of which should induce unique fluorescent signatures in a cell specific manner. Confirming neuronal function from differentiated Camgaroo-2 ES cells is an important step toward neuron transplantation in a neurodegenerative disease model.
    URI
    http://hdl.handle.net/10355/2057
    Part of
    2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems