Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Up-regulation of the P2Y2 receptor by cytokines in neuronal cells

    Stanley, Emily
    Camden, Jean M.
    Erb, Laurie
    Seye, Cheikh I.
    Weisman, Gary A.
    View/Open
    [PDF] Up-regulationP2Y2Receptor.pdf (22.62Kb)
    Date
    2005
    Contributor
    University of Missouri--Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Alzheimer's Disease (AD) is characterized by inflammation and neurodegeneration in the brain due to the presence of extracellular amyloid beta (A β) plaques and neurofibrillary tangles. Microglial and astrocyte cells associated with these plaques and tangles have been shown to release cytokines in AD patients, which have a proinflammatory effect on the brain. The P2Y2 receptor (P2Y2R) is a receptor protein that is up-regulated in response to damage or stress in a variety of tissues, including blood vessels and salivary gland epithelium. Recently our laboratory has shown that activation of the P2Y2R enhances α -secretase-dependent amyloid precursor protein (APP) processing. APP is proteolytically processed by β - and γ -secretases to release neurodegenerative A β. Alternatively, APP can be cleaved within the A β domain by α -secretase releasing the non-amyloidogenic product, sAPP α, which has been shown to have neuroprotective properties. Primary neurons have low P2Y2R expression, however, it has been demonstrated that cytokines up-regulate P2Y2R in smooth muscle cells. Therefore, this study will explore if cytokines up-regulate P2Y2R expression in primary rat neurons and in SH-SY5Y human neuroblastoma cells. Primary rat neurons and SH-SY5Y human neuroblastoma cells were plated on glass cover slips 24 or 48 hours with individual treatment, or a combination of, human interleukin-1 β (IL1- β), tumor necrosis factor α (TNF α), and interferon γ (IF γ). P2Y2R activity was measured by increases in intracellular calcium concentration ([Ca2+]i ) in response to the P2Y2R agonist UTP. Results support the hypothesis that P2Y2R is up-regulated by cytokines in neuronal cells. Furthermore, real-time PCR results indicate a two-fold increase in P2Y2R mRNA after cytokine treatment. Therefore, activation of the up-regulated P2Y2R in stressed neurons generates a neuroprotective (sAPP α) rather than neurodegenerative (A β) peptide. These results could have a substantial impact on the understanding and treatment of neurological disorders such as AD.
    URI
    http://hdl.handle.net/10355/2214
    Part of
    2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems