Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    The effect of Camgaroo-2 incorporation on the differentiation potential of embryonic stem cells

    Struckhoff, Jessica
    Spears, Kathleen
    Pierret, Chris, 1972-
    Kirk, Mark D.
    View/Open
    [PDF] EffectCamgaroo-2Incorporation.pdf (14.04Kb)
    Date
    2005
    Contributor
    University of Missouri--Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Embryonic stem (ES) cells are capable of differentiating into any cell type in the body and are a promising therapeutic agent. Our research focuses on the differentiation of ES cells into functional neurons and/or glial that can nurture host cells of the nervous system that are damaged due to disease. Cells must express the appropriate phenotype and perform the proper function after transplantation. Camgaroo-2 is a fluorescence protein that provides a basal fluorescence and responds to a rise in intracellular calcium by producing an increase in fluorescence emission. Our lab transfected a mouse ES cell line (GSI-1) with the Camgaroo-2 gene and is testing this fluorescence indicator to determine the physiological function of cells grown in vitro. There is concern that the incorporation of the Camgaroo-2 gene could alter the cell phenotype, potentially decreasing their differentiation potential. GSI-1 cells were plated on culture slides following a neural induction protocol that uses retinoic acid and allowed to proliferate. Immunohistochemisty of slides was performed to label for neural precursors, immature and mature neurons, astrocytes, and oligodendrocytes (anti-O4). GSI-1 labeling was compared to corresponding immunohistochemistry performed on another ES cell line that had also been 'neuralized' to determine if the differentiation potential of the GSI-1 cells was similar to that of the other ES cell line. Similar labeling was seen for all markers except O4 which did not label for the GSI-1 cells, indicating the GSI-1 cells have the potential to differentiate into all cells of neural lineage except possibly oligodendrocytes. GSI-1 cells retained the ability to differentiate post-transfection with the Camgaroo-2 gene. Because of their unique ability to respond to an influx of intracellular calcium, GSI-1 cells expressing Camgaroo-2 can be transplanted into rodent models for human disease, and can be tested post transplantation for their ability to function as neural cells.
    URI
    http://hdl.handle.net/10355/2218
    Part of
    2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems