Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    How do we know that we have Obsessive-Compulsive Disorder?

    Vu, Kim Khanh
    Nair, Satish S., 1960-
    View/Open
    [PDF] HowDoWeKnow.pdf (13.56Kb)
    Date
    2005
    Contributor
    University of Missouri--Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    The brain is a network of neurons that control our pleasure, emotion, motivation and is important for all types of learning. The objective of the overall research in the OCD's group is to examine the changes in brain circuit, or neuroplasticity that cause Obsessive-Compulsive Disorder (OCD). Such interdisciplinary study requires information of many types: neuroanatomy (relevant regions), neurophysiology (cellular firing) and neurochemistry (neurotransmitters). The specific objectives were to assist with hypothesis development for OCD, to systematically collect information listed above and to work with modelers to develop a computational model for OCD in primates. The basis of this research is the hypothesis that the normal interactions of prefrontal cortical neurons with basal ganglia, thalamus, and amygdala are altered due to OCD, although the primary alterations and interactions remain unknown. Examination of the neuroplastic processes in these pathways will help uncover mechanisms of OCD. This analysis is facilitated by a two-tiered mathematical model for the representation of the brain circuits. At the cellular level (first tier), models can serve to highlight the mechanisms of neuroplasticity affecting firing of the neurons in the circuit. At the network level (second tier) the interactive effects between the brain regions can be studied. Data from primate and rat literature will be used to develop the model. A reliable computation model will help analyze the underlying causes systematically to comprehend the cellular/molecular mechanisms of OCD. After validation, the model can be used for predictive purposes including drug design and to further our understanding of the brain.
    URI
    http://hdl.handle.net/10355/2226
    Part of
    2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems