Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Office of Undergraduate Research (MU)
    • Undergraduate Research and Creative Achievements Forum (MU)
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Expression, purification and initial characterization of Halobacterium proline dehydrogenase

    West, Jeremy
    Tanner, Jack
    View/Open
    [PDF] ExpressionPurificationInitialCharacterization.pdf (24.96Kb)
    Date
    2005
    Contributor
    University of Missouri--Columbia. Office of Undergraduate Research
    Format
    Presentation
    Metadata
    [+] Show full item record
    Abstract
    Nature recycles proline by converting it to glutamate. This 4-electron oxidation process is catalyzed by two catabolic enzymes, proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH). Inborn defects in PRODH and P5CDH result in the disorders hyperprolinemia I & II, respectively. These conditions are often associated with mental retardation, convulsions, and brain disorders. PRODH has also been implicated in schizophrenia susceptibility, cancer and P53-mediated apoptosis. Despite their importance in human health and disease, these enzymes have not been extensively studied. Thus, the goal of this research is to characterize the structure and function of PRODH. The work presented here focuses on a newly discovered homologue of PRODH found in archaea, which we identified by bioinformatics analysis of genome sequence data. Archaea are also genetically more closely related to eukaryotes than bacteria, so study of their proteins may provide insights into homologous eukaryotic enzymes. Archaea are some of the Earth's oldest life forms and are known for living in extreme environments. The PRODH researched here is from the Halobacterium (salt-loving), which can be found in places such as the Dead Sea and the Great Salt Lake. Preliminary results so far include testing the expression of Halobacterium PRODH, known as YusM, in two different E. coli expression systems, BL21(DE3)pLysS and Rosetta2. The latter strain was used to account for rare codon usage by Halobacterium. Parameters varied in these expression tests included time and temperature of induction as well as IPTG concentration. After expression, the cells were broken in a French pressure cell and the cell debris was pelleted with centrifugation. YusM was found to be largely associated with the cell pellet; therefore protein purification under denaturing conditions was investigated. The use of urea as a denaturing reagent has been successful for purifying YusM. Once the protein was renatured it showed improved kinetic activity. We believe the improved activity is due to disruption of improperly folded protein by the denaturant, followed by re-folding into the native, or near-native, state. Further studies will need to be done to determine the cause of misfolding in the E. coli cell.
    URI
    http://hdl.handle.net/10355/2228
    Part of
    2005 Summer Undergraduate Research and Creative Achievements Forum (MU)
    Collections
    • 2005 Summer Undergraduate Research and Creative Achievements Forum (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems