Dynamics of Eddy-Driven Low-Frequency Dipole Modes. Part II: Free Mode Characteristics of NAO and Diagnostic Study
Abstract
Through calculating the scatter diagrams of the streamfunction ( P or T) versus potential vorticity (PV)(qP or qT), where P and T are the planetary-scale streamfunction and total streamfunction, respectively, and using a weakly nonlinear NAO model proposed in Part I of this paper, it is suggested that negative- and
positive-phase NAO events may approximately correspond to free modes even though driven by synopticscale eddies. In a planetary-scale field, the qP( P) scatter diagram of an NAO event exhibits a linear
multivalued functional relationship in a narrow region for the negative phase, but exhibits a linear singlevalued functional relationship during the positive phase. It was also found that there is no steepening of the slope of the main straight line in the qP( P) scatter diagrams for two phases of the NAO event. Instead, the slope of the straight line in the scatterplots is time independent throughout the life cycle of the NAO event. However, when synoptic-scale eddies are included in the streamfunction field, the qT( T) scatter diagram of the negative-phase NAO event shows a trend toward steepening during the intensification phase, and this tendency reverses during the decay phase. During the positive NAO phase the slope of the qt( T) scatter diagram shoals during the intensification phase and then steepens during the decay phase. Thus, it appears that the steepening and shoaling of the scatter diagrams of the streamfunction versus PV for the negative and
positive-phase NAO events are attributed to the effect of synoptic-scale eddies that force NAO events to form. Diagnostic studies using both composite and unfiltered fields of observed NAO events are presented to confirm these conclusions.
Citation
Journal of the Atmospheric Sciences, v 64 iss 1, 29-51