The Interactions between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred during the Summer Season

MOspace/Manakin Repository

Breadcrumbs Navigation

The Interactions between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred during the Summer Season

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/2398

[+] show full item record


Title: The Interactions between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred during the Summer Season
Author: Lupo, Anthony R., 1966-; Smith, Phillip J.
Contributor: University of Missouri-Columbia. College of Agriculture, Food and Natural Resources (CAFNR). School of Natural Resources. Department of Soil, Environmental and Atmospheric Sciences.
Keywords: vorticity advection
temperature advection
Date: 1998-02
Publisher: American Meteorological Society
Citation: Monthly Weather Review, Volume 126 Issue 2, pp. 502-515
Abstract: Using the Goddard Laboratory for Atmospheres Goddard Earth Observing System 5-yr analysis and the Zwack-Okossi equation as the diagnostic tool, the horizontal distribution of the dynamic and thermodynamic forcing processes contributing to the maintenance of a Northern Hemisphere midlatitude blocking anticyclone that occurred during the summer season were examined. During the development of this blocking anticyclone, vorticity advection, supported by temperature advection, forced 500-hPa height rises at the block center. Vorticity advection and vorticity tilting were also consistent contributors to height rises during the entire life cycle. Boundary layer friction, vertical advection of vorticity, and ageostrophic vorticity tendencies (during decay) consistently opposed block development. Additionally, an analysis of this blocking event also showed that upstream precursor surface cyclones were not only important in block development but in block maintenance as well. In partitioning the basic data fields into their planetary-scale (P) and synoptic-scale (S) components, 500-hPa height tendencies forced by processes on each scale, as well as by interactions (I) between each scale, were also calculated. Over the lifetime of this blocking event, the S and P processes were most prominent in the blocked region. During the formation of this block, the I component was the largest and most consistent contributor to height rises at the center point. It was also shown that the height- rise regions located on the anticyclonic side of the jet maxima associated with block development and intensification were primarily composed of the S and I components. Also, the precursor cyclones were associated with S or S and I height rises that contributed to the formation of this block. Finally, the results of this paper show that the forcing associated with summer-season blocking events are similar to that of their winter-season counterparts neglecting the natural case-to-case variability. In comparing these results to the results of other papers in this series, however, it is suggested that there may be two models for block development.
URI: http://hdl.handle.net/10355/2398
ISSN: 1520-0493

This item appears in the following Collection(s)

[+] show full item record