[-] Show simple item record

dc.contributor.authorMiller, Douglas J.eng
dc.date.issued2007eng
dc.description.abstractConditional Markov chain models of observed aggregate share-type data have been used by economic researchers for several years, but the classes of models commonly used in practice are often criticized as being purely ad hoc because they are not derived from micro-behavioral foundations. The primary purpose of this paper is to show that the estimating equations commonly used to estimate these conditional Markov chain models may be derived from the assumed statistical properties of an agent-specific discrete decision process. Thus, any conditional Markov chain model estimated from these estimating equations may be compatible with some underlying agent-specific decision process. The secondary purpose of this paper is to use an information theoretic approach to derive a new class of conditional Markov chain models from this set of estimating equations. The proposed modeling framework is based on the behavioral foundations but does not require specific assumptions about the utility function or other components of the agent-specific discrete decision process. The asymptotic properties of the proposed estimators are developed to facilitate model selection procedures and classical tests of behavioral hypotheses.eng
dc.identifier.citationDepartment of Economics, 2007eng
dc.identifier.urihttp://hdl.handle.net/10355/2558eng
dc.publisherDepartment of Economicseng
dc.relation.ispartofEconomics publicationseng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. College of Arts and Sciences. Department of Economicseng
dc.relation.ispartofseriesWorking papers (Department of Economics);WP 07-18eng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.source.urihttp://econ.missouri.edu/working-papers/2007/wp0718_millerd.pdfeng
dc.subjectFréchet derivativeeng
dc.subjectCressie-Read power divergence criterioneng
dc.subject.lcshMarkov processeseng
dc.subject.lcshStochastic processeseng
dc.titleBehavioral Foundations for Conditional Markov Models of Aggregate Dataeng
dc.typeWorking Papereng


Files in this item

[PDF]

This item appears in the following Collection(s)

  • Economics publications (MU)
    The items in this collection are the scholarly output of the faculty, staff, and students of the Department of Economics.

[-] Show simple item record