Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Christopher S. Bond Life Sciences Center (MU)
    • Proteomics Center (MU)
    • Proteomics Center publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Christopher S. Bond Life Sciences Center (MU)
    • Proteomics Center (MU)
    • Proteomics Center publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    System analysis of an Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition and metabolism

    Chen, Mingjie
    Mooney, Brian P.
    Hajduch, Martin
    Joshi, Trupti, 1977-
    Zhou, Mingyi
    Xu, Dong, 1965-
    Thelen, Jay J.
    View/Open
    [PDF] SystemAnalysisArabidopsisMutant.pdf (1.596Mb)
    Date
    2009
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Embryo-specific overexpression of biotin carboxyl carrier protein 2 (BCCP2) inhibited plastid acetyl-coenzyme A carboxylase (ACCase), resulting in altered oil, protein, and carbohydrate composition in mature Arabidopsis (Arabidopsis thaliana) seed. To characterize gene and protein regulatory consequences of this mutation, global microarray, two-dimensional difference gel electrophoresis, iTRAQ, and quantitative immunoblotting were performed in parallel. These analyses revealed that (1) transgenic overexpression of BCCP2 did not affect the expression of three other ACCase subunits; (2) four subunits to plastid pyruvate dehydrogenase complex were 25% to 70% down-regulated at protein but not transcript levels; (3) key glycolysis and de novo fatty acid/lipid synthesis enzymes were induced; (4) multiple storage proteins, but not cognate transcripts, were up-regulated; and (5) the biotin synthesis pathway was up-regulated at both transcript and protein levels. Biotin production appears closely matched to endogenous BCCP levels, since overexpression of BCCP2 produced mostly apo-BCCP2 and the resulting ACCase-compromised, low-oil phenotype. Differential expression of glycolysis, plastid pyruvate dehydrogenase complex, fatty acid, and lipid synthesis activities indicate multiple, complex regulatory responses including feedback as well as futile "feed-forward" elicitation in the case of fatty acid and lipid biosynthetic enzymes. Induction of storage proteins reveals that oil and protein synthesis share carbon intermediate(s) and that reducing malonyl-coenzyme A flow into fatty acids diverts carbon into amino acid and protein synthesis.
    URI
    http://hdl.handle.net/10355/3239
    Part of
    Proteomics Center publications (MU)
    Citation
    Plant Physiology 150:27-41 (2009)
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommerical-NoDerivs 3.0 License.
    Collections
    • Proteomics Center publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems