Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Christopher S. Bond Life Sciences Center (MU)
    • Proteomics Center (MU)
    • Proteomics Center publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Christopher S. Bond Life Sciences Center (MU)
    • Proteomics Center (MU)
    • Proteomics Center publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Prostaglandins A1 and E1 influence gene expression in an established insect cell line (BCIRL-HzAM1 cells)

    Stanley, David W.
    Goodman, Cynthia
    An, Shiheng
    McIntosh, Arthur H.
    Song, Qisheng
    View/Open
    [PDF] ProstaglandinsA1E1InfluenceGeneExpression.pdf (1.309Mb)
    Date
    2007
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Prostaglandins (PGs) and other eicosanoids exert important physiological actions in insects and other invertebrates, including influencing ion transport and mediating cellular immune defense functions. Although these actions are very well documented, we have no information on the mechanisms of PGs actions in insect cells. Here we report on the outcomes of experiments designed to test our hypothesis that PGs modulate gene expression in an insect cell line established from pupal ovarian tissue of the moth Helicoverpa zea (BCIRL-HzAM1 cells). We treated cells with either PGA1 or PGE1 for 12 or 24 h then analyzed cell lysates by 2-D electrophoresis. Analysis of the gels by densitometry revealed substantial changes in protein expression in some of the protein spots we analyzed. These spots were processed for mass spectrometric analysis by MALDI TOF/TOF, which yielded in silico protein identities for all 34 spots. The apparent changes in three of the proteins were confirmed by semi-quantative PCR, showing that the changes in mRNA expression were reflected in changes in protein expression. The 34 proteins were sorted into six categories, protein actions, lipid metabolism, signal transduction, protection, cell functions and metabolism. The findings support the hypothesis that one mechanism of PG action in insect cells is the modulation of gene expression.
    URI
    http://hdl.handle.net/10355/3245
    Part of
    Proteomics Center publications (MU)
    Citation
    Insect Biochemistry and Molecular Biology Vol. 38, No. 3, March 2008, pp 275-284
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommerical-NoDerivs 3.0 License.
    Collections
    • Proteomics Center publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems