Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Christopher S. Bond Life Sciences Center (MU)
    • Proteomics Center (MU)
    • Proteomics Center publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Christopher S. Bond Life Sciences Center (MU)
    • Proteomics Center (MU)
    • Proteomics Center publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit

    Zhu, Jinming
    Alvarez, Sophie
    Marsh, Ellen L.
    LeNoble, Mary E.
    Cho, In-jeong, 1970-
    Sivaguru, Mayandi
    Chen, Sixue
    Nguyen, Henry T.
    Wu, Yajun
    Schachtman, Daniel P.
    Sharp, Bob (Robert E.)
    View/Open
    [PDF] CellWallProteomeMaize.pdf (1.748Mb)
    Date
    2007
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Previous work on the adaptation of maize (Zea mays) primary roots to water deficit showed that cell elongation is maintained preferentially toward the apex, and that this response involves modification of cell wall extension properties. To gain a comprehensive understanding of how cell wall protein (CWP) composition changes in association with the differential growth responses to water deficit in different regions of the elongation zone, a proteomics approach was used to examine water soluble and loosely ionically bound CWPs. The results revealed major and predominantly region-specific changes in protein profiles between well-watered and water-stressed roots. In total, 152 water deficit-responsive proteins were identified and categorized into five groups based on their potential function in the cell wall: reactive oxygen species (ROS) metabolism, defense and detoxification, hydrolases, carbohydrate metabolism, and other/unknown. The results indicate that stress-induced changes in CWPs involve multiple processes that are likely to regulate the response of cell elongation. In particular, the changes in protein abundance related to ROS metabolism predicted an increase in apoplastic ROS production in the apical region of the elongation zone of water-stressed roots. This was verified by quantification of hydrogen peroxide content in extracted apoplastic fluid and by in situ imaging of apoplastic ROS levels. This response could contribute directly to the enhancement of wall loosening in this region. This large-scale proteomic analysis provides novel insights into the complexity of mechanisms that regulate root growth under water deficit conditions and highlights the spatial differences in CWP composition in the root elongation zone.
    URI
    http://hdl.handle.net/10355/3250
    Part of
    Proteomics Center publications (MU)
    Citation
    Plant Physiology 145:1533-1548 (2007)
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommerical-NoDerivs 3.0 License.
    Collections
    • Proteomics Center publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems