Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Christopher S. Bond Life Sciences Center (MU)
    • Proteomics Center (MU)
    • Proteomics Center publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Christopher S. Bond Life Sciences Center (MU)
    • Proteomics Center (MU)
    • Proteomics Center publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Proteomic identification of PKC-mediated expression of 20E-induced protein in Drosophila melanogaster

    Sun, Yaning, 1978-
    An, Shiheng
    Henrich, Vincent C.
    Sun, Xiaoping
    Song, Qisheng
    View/Open
    [PDF] ProteomicIdentificationPKCMediatedExpression.pdf (813.7Kb)
    Date
    2007
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Ecdysone receptor (EcR) and its heterodimeric partner, ultraspiracle protein (USP), are nuclear receptors that mediate the action of the insect molting hormone 20-hydroxyecdysone (20E). There is evidence that the activity of both receptors is affected by phosphorylation. Using a proteomic approach, we have shown that protein kinase C (PKC) activity is necessary for mediating 20E-induced expression of 14 specific proteins, including three previously reported 20E responsive proteins, and is also responsible for the intracellular localization of EcR and USP in larval salivary glands of Drosophila melanogaster. The 20E-dependent expression of the proteins was verified using real-time PCR and/or Western blot analysis. For some genes, inhibition of PKC activity reduced 20E-dependent transcriptional activity rapidly, raising the possibility that these are direct gene targets of EcR and USP. The data further indicate that PKC-mediated phosphorylation is also required for genes regulated indirectly by 20E-induced changes in the larval salivary gland.
    URI
    http://hdl.handle.net/10355/3256
    Part of
    Proteomics Center publications (MU)
    Citation
    Journal of Proteome Research, 2007, 6 (11), pp 4478-4488
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommerical-NoDerivs 3.0 License.
    Collections
    • Proteomics Center publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems