[-] Show simple item record

dc.contributor.advisorFerreira, Marco Antonio Rosa, 1969-eng
dc.contributor.authorSanyal, Nilotpaleng
dc.date.issued2012eng
dc.date.submitted2012 Summereng
dc.descriptionTitle from PDF of title page (University of Missouri--Columbia, viewed on July 29, 2013).eng
dc.descriptionThe entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.eng
dc.descriptionDissertation advisor: Dr. Marco Ferrieraeng
dc.descriptionIncludes bibliographical references.eng
dc.descriptionVita.eng
dc.descriptionPh. D. University of Missouri--Columbia 2012.eng
dc.descriptionDissertations, Academic -- University of Missouri--Columbia -- Statistics.eng
dc.description"July 2012"eng
dc.description.abstractThe present dissertation consists of the work done on two projects. As part of the first project, we develop methodology for Bayesian hierarchical multi-subject multiscale analysis of functional magnetic resonance imaging (fMRI) data. After modeling the brain images temporally with a standard general linear model, we transform the estimated standardized regression coefficient maps through a discrete wavelet transform. We assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise and assume equal mixture probabilities at same location and level across subjects. We develop empirical Bayes methodology to estimate the hyperparameters, carry out inference in the wavelet space and obtain smoothed regression coefficients images by inverse wavelet transform. Application to a simulated dataset has shown better performance of our multi-subject analysis compared to single subject analysis in terms of mean squared error and ROC curve based analysis. Finally, we apply our methodology to an event-related fMRI dataset from Postle (2005). As part of the second project, we develop a novel computational framework for Bayesian optimal sequential design for random function estimation based on evolutionary Markov chain Monte Carlo. Our framework is able to consider general observation models, such as exponential family distributions and scale mixtures of normals, and allows optimality criteria with general utility functions that may include competing objectives, such as minimization of costs, minimization of the distance between true and estimated functions, and minimization of the prediction error. We illustrate our novel methodology with an application to experimental design for a nonparametric regression problem with the cubic spline prior distribution.eng
dc.format.extentxiii, 140 pageseng
dc.identifier.oclc872569095eng
dc.identifier.urihttps://hdl.handle.net/10355/36693
dc.identifier.urihttps://doi.org/10.32469/10355/36693eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcollectionUniversity of Missouri--Columbia. Graduate School. Theses and Dissertations.eng
dc.subjectmulti-subject analysiseng
dc.subjectfunctional magnetic resonance imagingeng
dc.subjectrandom function estimationeng
dc.subjectMarkov chain Monte Carloeng
dc.titleBayesian fMRI data analysis and Bayesian optimal designeng
dc.typeThesiseng
thesis.degree.disciplineStatistics (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record