Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • BioMed Central (UMKC)
    • BioMed Central Open Access Articles (UMKC)
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • BioMed Central (UMKC)
    • BioMed Central Open Access Articles (UMKC)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    An embedded multichannel telemetry unit for bone strain monitoring

    Moiz, Fahad
    Kumar, Sharika
    Leon-Salas, Walter D. (Walter Daniel)
    Johnson, Mark
    View/Open
    [XML] 1687-3963-2013-14.xml (138.5Kb)
    [PDF] 1687-3963-2013-14.pdf (2.117Mb)
    Date
    2013-10-17
    Format
    Journal Article
    Metadata
    [+] Show full item record
    Abstract
    Abstract An embedded telemetry unit for bone strain monitoring is presented. The telemetry unit is designed using commercially available components to lower design time and manufacturing costs. The unit can read up to eight strain gauges and measures 2.4 cm × 1.3 cm × 0.7 cm. The unit is powered from a small Li-polymer battery that can be recharged wirelessly through tissue, making it suitable for implanted applications. The average current consumption of the telemetry unit is 1.9 mA while transmitting at a rate of 75 kps and at a sampling rate of 20 Hz. The telemetry unit also features a power-down mode to minimize its power consumption when it is not in use. The telemetry unit operates in the 915-MHz ISM radio band. The unit was tested in an ex vivo setting with an ulna bone from a mouse and in a simulated in vivo setting with a phantom tissue. Bone strain data collected ex vivo shows that the telemetry unit can measure strain with an accuracy comparable to a more expensive benchtop data acquisition system.
    URI
    http://dx.doi.org/10.1186/1687-3963-2013-14
    http://hdl.handle.net/10355/40262
    Citation
    EURASIP Journal on Embedded Systems. 2013 Oct 17;2013(1):14
    Rights
    Fahad Moiz et al.; licensee BioMed Central Ltd.
    Collections
    • BioMed Central Open Access Articles (UMKC)
    • Computer Science and Electrical Engineering Publications (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems