Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2004 Dissertations (MU)
    • 2004 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2004 Dissertations (MU)
    • 2004 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Characterization and functional significance of Msc2p & Zrg17p, which form a zinc transport complex in the endoplasmic reticulum of Saccharomyces cerevisiae

    Ellis, Charissa D., 1977-
    View/Open
    [PDF] public.pdf (17.27Kb)
    [PDF] short.pdf (13.55Kb)
    [PDF] research.pdf (8.077Mb)
    Date
    2004
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    We demonstrate a novel interaction between two members of the cation diffusion facilitator (CDF) family in Saccharomyces cerevisiae: Msc2p and a newly recognized CDF family member, Zrg17p. Both Msc2p and Zrg17p have been previously implicated in zinc homeostasis in yeast. In particular, ZRG17 was previously identified as a zinc regulated gene controlled by the zinc-responsive Zap1p transcription factor. We show that both Msc2p and Zrg17p are localized to the endoplasmic reticulum (ER) when expressed at normal levels. Zinc deficiency in yeast induces the unfolded protein response (UPR), a system normally activated by unfolded ER proteins. UPR induction in low zinc is exacerbated in msc2 and zrg17 mutants. Genetic and biochemical evidence indicate that this UPR induction is due to genuine ER dysfunction. Notably, ER-associated protein degradation (ERAD) is defective in zinc-limited msc2 mutants. Msc2p and Zrg17p physically interact, as determined by co-immunoprecipitation. Therefore, we propose that Msc2p and Zrg17p form a zinc transport complex in the ER membrane to maintain the function of this compartment. Zinc deficiency also upregulates the mammalian ER stress response, indicating a conserved requirement for zinc in ER function among eukaryotes. Lastly, ZnT5 and ZnT6, the closest mammalian homologues to Msc2p and Zrg17p, may also functionally interact, suggesting that interactions between CDF members may be a common phenomenon.We demonstrate a novel interaction between two members of the cation diffusion.
    URI
    https://hdl.handle.net/10355/4087
    https://doi.org/10.32469/10355/4087
    Degree
    Ph. D.
    Thesis Department
    Biochemistry (Agriculture) (MU)
    Collections
    • Biochemistry electronic theses and dissertations (MU)
    • Biochemistry electronic theses and dissertations (MU)
    • 2004 MU dissertations - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems