[-] Show simple item record

dc.contributor.advisorMcClure, Bruce A.eng
dc.contributor.authorHancock, Charles Nathan, 1975-eng
dc.date.issued2005eng
dc.date.submitted2005 Springeng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file viewed on (January 25, 2007)eng
dc.descriptionIncludes bibliographical references.eng
dc.descriptionVita.eng
dc.descriptionThesis (Ph.D.) University of Missouri-Columbia 2005.eng
dc.descriptionDissertations, Academic -- University of Missouri--Columbia -- Biochemistry (Agriculture)eng
dc.description.abstractFlowering plants control fertilization through pollen-pistil interactions. Self-incompatibility (SI) is a well-studied pollen-pistil interaction that promotes cross-pollination. SI is controlled by a multi-haplotype locus called the S-locus. In Nicotiana alata, S-RNase is a product of the S-locus and regulates specificity in the pistil, while S-locus F-box protein (SLF) controls specificity in the pollen. The interaction between S-RNase and SLF determines whether the pollination is compatible or incompatible. In an incompatible cross, the ribonuclease activity of S-RNase inhibits pollen tube growth. Genetic experiments indicate that, in addition to S-RNase and SLF, non-S-factors are also required for SI. S-RNase binding proteins represent potential non-S-factors required for SI. Using affinity chromatography, we found that S-RNase selfassociates and three homologous stylar glycoproteins - the 120kDa glycoprotein (120K), N. alata pistil extensin-like protein III (NaPELP III), and N. alata transmitting tract specific glycoprotein (NaTTS) - bind directly to S-RNase. I studied the oligomerization of S-RNase in detail and found that self-association is dependent on S-haplotype and buffer conditions. I determined that the components of the S-RNase complex account for 30% of soluble pistil protein. 120K is the most likely candidate for a non-S-factor because it enters the cytoplasm of growing pollen tubes and shows polymorphism when SI and self-compatible Nicotiana species are compared. To test its role in SI, I suppressed 120K expression using RNAi. Suppressing 120K caused a breakdown of SI, confirming that it functions in SI.eng
dc.identifier.merlinb57680802eng
dc.identifier.urihttps://hdl.handle.net/10355/4160
dc.identifier.urihttps://doi.org/10.32469/10355/4160eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
dc.sourceSubmitted by University of Missouri--Columbia Graduate School.eng
dc.subject.lcshPlants -- Self-incompatibilityeng
dc.subject.lcshPlants -- Reproductioneng
dc.titleS-RNase proteins: functional studies of the 120kDa glycoprotein and SRNase oligomerizationeng
dc.typeThesiseng
thesis.degree.disciplineBiochemistry (Agriculture) (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record