Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Multi-index, multi-object content-based retrieval with spatial summarization

    Klaric, Matthew
    View/Open
    [PDF] public.pdf (1.981Kb)
    [PDF] research.pdf (14.34Mb)
    [PDF] short.pdf (15.61Kb)
    Date
    2010
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    In recent years we have seen the development of several novel content-based retrieval (CBR) systems that have had success by focusing on a specific domain and exploiting domain-speci c information. CBR systems allow users to query a media database using item content as opposed submitting a text-based query. In many CBR applications, the input to the search process is a complicated object that may be composed of several constituent parts. The proposed approach performs CBR queries by decomposing a complex query into several heterogeneous queries. We have developed a multi-index, multi-object CBR framework for geospatial imagery retrieval that extracts features specifically developed for high-resolution commercial satellite imagery. The results of these queries will be spatially summarized for a user based on both retrieval score and spatial distance. This allows results to be presented in a logical manner to allow for more efficient interpretation by the user. Further, we propose to develop an additional search capability that allows for multi-object searches by spatial configuration rather than simply by object-to-object correspondence. Additionally, to confront situations where a user has determined that certain search results are not relevant, we will provide online and memory-based relevance feedback algorithms for use with multi-index, multi-object CBR systems. The experimental results demonstrate the efficiency and accuracy of the proposed methods; moreover, through the fusion of multi-index and multi-object search techniques, we are able to construct new, sophisticated query mechanisms.
    URI
    https://hdl.handle.net/10355/41907
    https://doi.org/10.32469/10355/41907
    Degree
    Ph. D.
    Thesis Department
    Computer science (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2010 MU dissertations - Freely available online
    • Computer Science electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems