[-] Show simple item record

dc.contributor.advisorShyu, Chi-Reneng
dc.contributor.authorReneker, Jeffeng
dc.date.issued2010eng
dc.date.submitted2010 Falleng
dc.description.abstractAll of the information necessary to reproduce a living organism is contained in the DNA of its genome. Within the genomic sequence, there are subsequences called genes that are transcribed into RNA and translated into proteins which control cellular function. The genomes of many different organisms, including human, have already been sequenced and many more are currently in progress. Also, there are concurrent projects to annotate the genes from these genomes. Once annotated, cross-species comparisons of both gene sequence and gene annotation terms are possible, which can facilitate knowledge discovery. This dissertation introduces our work in this area. For example, our newly-developed refined repetitive sequence searches were used to identify a potentially new phase-variable site in Haemophilus influenzae based on information previously reported from Helicobacter pylori. The genome of an organism is inherited from its parents and is, in turn, passed on to its descendants. Determinative DNA sequences, both intragenic and intergenic, are often very highly conserved between diverging species over time. In fact, many of these sequences have been exactly conserved in multiple species throughout evolution. Once these sequences can be comprehensively identified in a set of genomes, they can be studied in more detail. This dissertation introduces our work in this area as well. For instance, several previously unreported long identical multi-species elements (LIMEs) were identified and studied in mammals. Also, the comprehensive set of LIMEs in six large plant genomes are identified and extensively characterized in terms structure, function and evolution.eng
dc.format.extentxi, 100 pageseng
dc.identifier.urihttps://hdl.handle.net/10355/41915
dc.identifier.urihttps://doi.org/10.32469/10355/41915eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subjectCross-species searcheseng
dc.subjectHashmap indexing of DNA sequenceeng
dc.subjectRefined repetitive searcheseng
dc.subjectComparative genomicseng
dc.subjectLong identical multi-species elements (LIMES)eng
dc.subject.FASTComputational biologyeng
dc.subject.FASTGenomicseng
dc.subject.FASTNucleotide sequenceeng
dc.titleRefined repetitive searches and long identical multi-species elements in mammals and plants : Insights into structure, function and evolutioneng
dc.typeThesiseng
thesis.degree.disciplineComputer science (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record