Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2005 Theses (MU)
    • 2005 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2005 Theses (MU)
    • 2005 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Developing neural network applications using LabVIEW

    Pogula Sridhar, Sriram
    View/Open
    [PDF] public.pdf (9.695Kb)
    [PDF] short.pdf (10.17Kb)
    [PDF] research.pdf (1.531Mb)
    Date
    2005
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Artificial Neural Networks (ANN) have gained tremendous popularity over the last few decades. They are considered as substitutes for classical techniques which have been followed for many years. Many neural network architectures and training algorithms have been developed so far. Different aspects of ANN such as efficiency, speed, accuracy, dependability and the like have been studied extensively. Many approaches have been suggested to improve the performance of neural nets. In this thesis, a new approach has been proposed to build neural net architectures. LabVIEW is graphical programming software developed by National Instruments. Using LabVIEW, an Application Development Environment (ADE), ready-made Virtual Instruments (VI) can be developed for various applications. This thesis concentrates on a LabVIEW approach to build various neural net structures. The learning algorithms used to train these neural nets also vary according to the requirements and application. Multi-layer feed-forward NN, Radial Basis Function NN, Principal Component NN, and Self- Organizing feature maps have been used as tools to develop applications such as pattern classification, image compression and plant modeling in a LabVIEW environment.
    URI
    http://hdl.handle.net/10355/4251
    Degree
    M.S.
    Thesis Department
    Electrical engineering (MU)
    Collections
    • 2005 MU theses - Freely available online
    • Electrical Engineering and Computer Science electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems