Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Computational and theoretical study of water and lipid dynamics in biomolecular systems

    Jhuma, Das, 1980-
    View/Open
    [PDF] public.pdf (2.266Kb)
    [PDF] research.pdf (5.271Mb)
    [PDF] short.pdf (7.567Kb)
    Date
    2010
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    This Ph.D. thesis describes three research projects in theoretical and computational biophysics aimed at studying the dynamics of water and lipid molecules in two distinct biomolecular systems. In the first project the energetics and dynamics of water transport through the aquaglyceroporin (GlpF) channel protein is studied by a combination of all-atom molecular dynamics (MD) simulations (both equilibrium and non-equilibrium MD) and stochastic modeling. The MD results are used to determine the potential of mean force and the diffusion coefficient of water molecules crossing the channel. Then, the latter quantities are used to estimate the intrinsic water flux through GlpF, and the corresponding channel permeability. In the second project, by employing a 0.1 micro second long, all-atom MD simulation, the self and correlated dynamics of lipid atoms and molecules in a fully hydrated DMPC lipid bilayer is investigated. The MD simulation results are used to develop a memory function based approach for accurately calculating the lateral self-diffusion coefficient of lipids. In some cases, the proposed memory function method provides a better approach than the currently used ones for determining the lateral diffusion coefficient of lipids in lipid bilayers from the dynamic structure factor measured in inelastic neutron scattering experiments. The purpose of the third project is to investigate the dynamics of water molecules in a hydrated lipid membrane. Using the same MD simulation as in the second project, the anomalous properties of buried and hydration waters (located at the proximity of the fluctuating surface of the lipid membrane) are revealed and contrasted to the properties of bulk water.
    URI
    https://hdl.handle.net/10355/42560
    https://doi.org/10.32469/10355/42560
    Degree
    Ph. D.
    Thesis Department
    Physics and astronomy (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2010 MU dissertations - Freely available online
    • Physics and Astronomy electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems