[-] Show simple item record

dc.contributor.advisorKosztin, Ioaneng
dc.contributor.authorJhuma, Das, 1980-eng
dc.date.issued2010eng
dc.date.submitted2010 Falleng
dc.descriptionTitle from PDF of title page (University of Missouri--Columbia, viewed on April 30, 2014).eng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionVitaeng
dc.description.abstractThis Ph.D. thesis describes three research projects in theoretical and computational biophysics aimed at studying the dynamics of water and lipid molecules in two distinct biomolecular systems. In the first project the energetics and dynamics of water transport through the aquaglyceroporin (GlpF) channel protein is studied by a combination of all-atom molecular dynamics (MD) simulations (both equilibrium and non-equilibrium MD) and stochastic modeling. The MD results are used to determine the potential of mean force and the diffusion coefficient of water molecules crossing the channel. Then, the latter quantities are used to estimate the intrinsic water flux through GlpF, and the corresponding channel permeability. In the second project, by employing a 0.1 micro second long, all-atom MD simulation, the self and correlated dynamics of lipid atoms and molecules in a fully hydrated DMPC lipid bilayer is investigated. The MD simulation results are used to develop a memory function based approach for accurately calculating the lateral self-diffusion coefficient of lipids. In some cases, the proposed memory function method provides a better approach than the currently used ones for determining the lateral diffusion coefficient of lipids in lipid bilayers from the dynamic structure factor measured in inelastic neutron scattering experiments. The purpose of the third project is to investigate the dynamics of water molecules in a hydrated lipid membrane. Using the same MD simulation as in the second project, the anomalous properties of buried and hydration waters (located at the proximity of the fluctuating surface of the lipid membrane) are revealed and contrasted to the properties of bulk water.eng
dc.format.extentxii, 93 pageseng
dc.identifier.urihttps://hdl.handle.net/10355/42560
dc.identifier.urihttps://doi.org/10.32469/10355/42560eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subjectLipid dynamicseng
dc.subjectWater dynamicseng
dc.subjectMolecular dynamicseng
dc.subjectMemory functioneng
dc.subject.FASTLipids -- Analysiseng
dc.subject.FASTWater -- Molecular rotationeng
dc.subject.FASTCell membraneseng
dc.titleComputational and theoretical study of water and lipid dynamics in biomolecular systemseng
dc.typeThesiseng
thesis.degree.disciplinePhysics and astronomy (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record