[-] Show simple item record

dc.contributor.advisorSuppes, Galen J.eng
dc.contributor.authorDasari, Mohanprasad A., 1979-eng
dc.date.issued2006eng
dc.date.submitted2006 Springeng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (July 18, 2008)eng
dc.descriptionVita.eng
dc.descriptionIncludes bibliographical references.eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2006.eng
dc.descriptionDissertations, Academic -- University of Missouri--Columbia -- Chemical engineering.eng
dc.description.abstractThe current research is based on developing an improved and fundamental understanding of technology that will allow the conversion of this crude glycerin to a propylene glycol based antifreeze product. Hydrogenolysis of glycerol to propylene glycol was performed using copper chromite catalyst. At temperatures above 200C̕ and hydrogen pressure of 200 psi, the selectivity to propylene glycol decreased due to excessive hydrogenolysis of the propylene glycol. The yield of propylene glycol increased with decreasing water content. The main causes for the deactivation were reduction of the cuprous chromium active species into metallic copper species, metal leaching, and blocking of sites by strongly adsorbed inorganic and organic species present in the feed or generated during the reaction. A new reaction pathway for converting glycerol to propylene glycol via an intermediate was validated by isolating the acetol intermediate. In the first step involves dehydration of glycerol to acetol with subsequent hydrogenation of acetol to propylene glycol. High acetol selectivities ([greater than] 90%) were achieved using copper-chromite catalyst and operating in semi-batch reactive distillation mode. The acetol from this reaction readily hydrogenates to from propylene glycol with selectivities exceeding 95%.eng
dc.identifier.merlinb64026486eng
dc.identifier.oclc234235600eng
dc.identifier.urihttps://hdl.handle.net/10355/4331
dc.identifier.urihttps://doi.org/10.32469/10355/4331eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.subject.lcshHydrogenolysiseng
dc.subject.lcshEthylene glycoleng
dc.subject.lcshChemical reactionseng
dc.titleCatalytic conversion of glycerol and sugar alcohols to value-added productseng
dc.typeThesiseng
thesis.degree.disciplineChemical engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record