Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Simulating cottonwood tree growth in flood plains using the LIGNUM modeling method

    Lu, Miaoer, 1977-
    View/Open
    [PDF] public.pdf (15.05Kb)
    [PDF] short.pdf (117.7Kb)
    [PDF] research.pdf (3.253Mb)
    Date
    2006
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    As a flood-tolerant and fast-growing species, cottonwood is a promising species in flood plain and short-rotation forestry. Understanding tree growth will provide critical assistance in flood plain forest management and forest configuration practice. Computer based tree growth simulation models provide a complementary tool for forest managers and scientists to learn the underlying tree growth mechanisms and a tree's response to different growing environments. LIGNUM, a functional-structural tree growth simulation model, was applied to simulation of the cottonwood growth in a flood plain area in central Missouri. The key characteristics of the LIGNUM model are the linkage between tree spatial structure and physiological function. L-system was adopted in structural derivation of the tree. Physiological processes including photosynthesis and growth allocation were embedded in LIGNUM model. Communication between L-system and LIGNUM model was implemented during model simulation. Based on the general framework from the previous LIGNUM version, the application of cottonwood growth simulation with LIGNUM modeling method required a few new developments, including real photon flux data input, a voxel space photon flux interception module, a photosynthesis product module, three nested short time modeling steps, and stand growth simulation. The link to actual weather data enabled better convergence of model results with real world tree growth. The voxel space photon flux interception module replaced tree compartments with regular voxels as the calculation unit, resulting in efficient photon flux interception operation. Three nested short time steps were used according to the growth speed of cottonwood to capture the rapid change in tree structure. The biochemically-derived model on photosynthetic production Farquhar's model - was applied to accumulate net leaf CO2 assimilation all over the tree. The application of LIGNUM in mono-cohort, even-aged, and tightly spaced cottonwood stand is a new extension of the LIGNUM model.The simulation results reflected well the real cottonwood growth for the first four years. Simulated results respond logically to photon flux input variation. The model is sensitive to several parameters in the photosynthesis module. Further application of LIGNUM model can be used in more complicated forest research.
    URI
    https://hdl.handle.net/10355/4338
    https://doi.org/10.32469/10355/4338
    Degree
    Ph. D.
    Thesis Department
    Forestry (MU)
    Rights
    OpenAccess.
    Collections
    • 2006 MU dissertations - Freely available online
    • Forestry electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems