Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2013 Dissertations (UMKC)
    • 2013 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2013 Dissertations (UMKC)
    • 2013 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Synthesis and analysis of siloranes for use as a biomaterial and extended twisted molecular ribbons

    Miller, Bradley David
    View/Open
    [PDF] SYNTHESIS AND ANALYSIS OF SILORANES FOR USE AS A BIOMATERIAL AND EXTENDED TWISTED MOLECULAR RIBBONS (3.270Mb)
    Date
    2013
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The development of complex organic molecules with industrial potential requires meticulous synthetic methodologies coupled with detailed investigations surrounding their physical properties. This dissertation encompasses the study of two such projects: (i) the synthesis, optimization, and quality control of siloranes for use as a biomaterial (i.e., bone cements) and (ii) the investigation of the synthesis, physical properties, and barrier to enantiomerization of twisted molecular ribbons. Optimization of the synthesis of the silorane monomers PHEPSI and CYGEP was completed via metal-catalyzed hydrosilylation. PHEPSI was synthesized utilizing a monomeric version of the rhodium-based Wilkinson’s catalyst. The synthesis of CYGEP was accomplished using two versions of the platinum-based Lamoreaux’s catalyst (in-house versus commercial). In both cases, formation of CYGEP was accomplished only in those reactions in which acetonitrile was present, otherwise polymerization occurred. A quality control investigation found that for use of these monomers as a potential biomaterial, a high grade of Wilkinson’s catalyst must be utilized for the synthesis of PHEPSI, while use of the commercial catalyst is sufficient for the synthesis of CYGEP. Mixing of the monomers no more than one month post purification prevents the decomposition of PHEPSI. An exploration into the effect of end caps and substitution of the acene skeleton was completed. The synthesis of the target pentacene and anthracene compounds was focused on the incorporation of isopropyl substituents while extension of the acene skeleton was expanded to the hexacene diol. The targets were synthesized utilizing a series of Diels-Alder and reduction reactions. The incorporation of the isopropyl substituent was accomplished through the use of lithium reagents generated in situ. The barrier to enantiomerization was then studied on the aromatized isopropyl acenes utilizing VT-NMR spectroscopy. Coalescence of the methyl peaks in the 1H NMR spectrum was not observed at temperatures up to 408 K. Utilizing this method, the barrier to enantiomerization of these compounds was found to be greater than 24.0 kcal/mol. The stages of the synthesis were determined through mass spectrometry, 1H and 13C NMR spectroscopy, and in some cases X-ray crystallography. Fluorescence of the isopropyl targets was investigated through UV-Vis spectroscopy
    Table of Contents
    Development of Siloranes for use in a biomaterial -- Synthesis and analysis of extended twisted molecular ribbons
    URI
    http://hdl.handle.net/10355/43469
    Degree
    Ph. D.
    Thesis Department
    Chemistry (UMKC)
     
    Pharmacy (UMKC)
     
    Oral Biology (UMKC)
     
    Collections
    • Dentistry Electronic Theses and Dissertations (UMKC)
    • 2013 UMKC Dissertations - Freely Available Online
    • Chemistry Electronic Theses and Dissertations (UMKC)
    • Pharmaceutical Sciences Electronic Theses and Dissertations (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems