Sharp estimates of the transmission boundary value problem for dirac operators on non-smooth domains

MOspace/Manakin Repository

Breadcrumbs Navigation

Sharp estimates of the transmission boundary value problem for dirac operators on non-smooth domains

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/4358

[+] show full item record


Title: Sharp estimates of the transmission boundary value problem for dirac operators on non-smooth domains
Author: Shi, Qiang, 1976-
Date: 2006
Publisher: University of Missouri--Columbia
Abstract: This thesis derives the sharp estimates for the transmission boundary value problems (TBVP) for Dirac operators in Lipschitz domains in the three dimensional setting. Most of the transmission problems considered in the literature fall under several categories, depending on the nature of the domain and solution. First, there is the class of problems in domains with su±ciently smooth boundaries. Second, there is the class of problems in domains with isolated singularities. Weak (variational) solutions for transmission problems in Lipschitz domains and strong solutions in Dahlberg's sense for transmission problems in Lipschitz domains were discussed in various literatures. Compared to previous work on transmission problems, our results are the first to establish well-posedness and optimal estimates in arbitrary Lipschitz domains. Applications to the transmission boundary value problems of the system of Maxwells equations are also presented in the last chapter of this thesis.
URI: http://hdl.handle.net/10355/4358
Other Identifiers: ShiQ-071106-D5284

This item appears in the following Collection(s)

[+] show full item record