Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Advanced analysis of short-fiber polymer composite material behavior

    Jack, David Abram, 1977-
    View/Open
    [PDF] public.pdf (1.982Kb)
    [PDF] short.pdf (36.92Kb)
    [PDF] research.pdf (5.540Mb)
    Date
    2006
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Short-fiber polymer composites experience widespread use in many industrial applications, where the orientation states of the short-fibers within the polymer matrix define the material properties of the composite structure. Due to the extensive use of these short fiber products, it is necessary to develop an accurate understanding of the fiber orientation kinematics and the resultant material characteristics of the processed part. This dissertation presents techniques to accurately represent the orientation state of fibers during the part molding process, and from the orientation state within the processed part predict, statistically, the resulting elastic material characteristics. Higher-order representations of the fiber orientation distribution are presented through the sixth-order orientation tensor fitted closure, and results yield a material stiffness tensor with fewer planes of material symmetry than current fourth-order closures while retaining a more accurate representation of fiber orientation. Analytic expressions for material stiffness expectation and variance are developed and validated through the Monte-Carlo method, and provide a more thorough understanding into the statistical nature of the material stiffness tensor. This work concludes with the presentation of the directional diffusion model for fiber collisions, and results demonstrate a significant delay in fiber alignment beyond existing models while retaining an identical steady state orientation.
    URI
    https://hdl.handle.net/10355/4363
    https://doi.org/10.32469/10355/4363
    Degree
    Ph. D.
    Thesis Department
    Mechanical and aerospace engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
    Collections
    • 2006 MU dissertations - Freely available online
    • Mechanical and Aerospace Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems