[-] Show simple item record

dc.contributor.advisorSmith, Douglas E., 1962-eng
dc.contributor.authorJack, David Abram, 1977-eng
dc.date.issued2006eng
dc.date.submitted2006 Falleng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on August 2, 2007)eng
dc.descriptionVita.eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2006.eng
dc.description.abstractShort-fiber polymer composites experience widespread use in many industrial applications, where the orientation states of the short-fibers within the polymer matrix define the material properties of the composite structure. Due to the extensive use of these short fiber products, it is necessary to develop an accurate understanding of the fiber orientation kinematics and the resultant material characteristics of the processed part. This dissertation presents techniques to accurately represent the orientation state of fibers during the part molding process, and from the orientation state within the processed part predict, statistically, the resulting elastic material characteristics. Higher-order representations of the fiber orientation distribution are presented through the sixth-order orientation tensor fitted closure, and results yield a material stiffness tensor with fewer planes of material symmetry than current fourth-order closures while retaining a more accurate representation of fiber orientation. Analytic expressions for material stiffness expectation and variance are developed and validated through the Monte-Carlo method, and provide a more thorough understanding into the statistical nature of the material stiffness tensor. This work concludes with the presentation of the directional diffusion model for fiber collisions, and results demonstrate a significant delay in fiber alignment beyond existing models while retaining an identical steady state orientation.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb5926973xeng
dc.identifier.oclc162136064eng
dc.identifier.urihttps://hdl.handle.net/10355/4363
dc.identifier.urihttps://doi.org/10.32469/10355/4363eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
dc.subjectfiber orientation kinematics.eng
dc.subjectfiber orientation kinematicseng
dc.subject.lcshPolymeric compositeseng
dc.titleAdvanced analysis of short-fiber polymer composite material behavioreng
dc.typeThesiseng
thesis.degree.disciplineMechanical and aerospace engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record