Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Thick filament regulation of myocardial contraction

    Korte, F. Steven, 1975-
    View/Open
    [PDF] public.pdf (31.46Kb)
    [PDF] short.pdf (51.99Kb)
    [PDF] research.pdf (4.011Mb)
    Date
    2006
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The ability of the heart to function as a pump is governed by mechanisms intrinsic to individual cardiac myocytes. The experiments in this dissertation were designed to examine the effects of sarcomere length and thick filament protein isoform expression on the contractile properties of single skinned cardiac myocytes. Myosin binding protein-C ablation (MyBP-C-\-) increases the rate of force development, loaded shortening velocity, and power output in mouse skinned cardiac myocytes, implying that MyBP-C regulates myocardial contractility by limiting crossbridge cycling. We also examined the effects of SL on mechanical properties in rat skinned cardiac myocytes containing either [alpha]-MyHC or [beta]-MyHC. Peak absolute and normalized loaded shortening velocity and power output was decreased at short SL in both [alpha]-MyHC and [beta]-MyHC myocytes. Matching myocyte force between long and short SL, however, sped loaded shortening velocity and increased power output in [alpha]-MyHC myocytes to values greater than at long SL, but this did not occur in [beta]-MyHC. Matching myocyte width between long and short SL sped loaded shortening velocity and increased power output to values greater than at long SL in both [alpha]-MyHC and [beta]-MyHC myocytes. It is concluded that there is an increase in crossbridge cycling at short SL as compared to long SL, but increased lattice spacing at short SL decreases actomyosin interactions. The data are presented in terms of a model whereby shortening SL induces a conformational change in MyBP-C that removes its constraint on the myosin heads, allowing them to cycle faster.
    URI
    https://doi.org/10.32469/10355/4383
    https://hdl.handle.net/10355/4383
    Degree
    Ph. D.
    Thesis Department
    Physiology (Medicine) (MU)
    Rights
    OpenAccess.
    Collections
    • 2006 MU dissertations - Freely available online
    • Medical Pharmacology and Physiology electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems